Hằng đẳng thức a^3 + b^3, a^3 - b^3 (a mũ 3 cộng trừ b mũ 3) đầy đủ

admin

"Ngoài 7 hằng đẳng thức lưu niệm thông thườn rời khỏi thì còn tồn tại một vài hằng đẳng thức không giống. Hãy tìm hiểu thêm nội dung bài viết tiếp sau đây nhằm nắm rõ rộng lớn về đẳng thức lập phương  a 3 b 3 (a nón 3 nằm trong trừ b nón 3) nhé!”

Hằng đẳng thức a^3 + b^3 (a nón 3 nằm trong b nón 3)

A3 + B3 = ( A + B )( A2 – AB + B2 )

A3 – B3 = ( A – B )( A2 + AB + B2 )

  • Lập phương của một tổng vì chưng lập phương của biểu thức loại nhất nằm trong 3 phiên tích của bình phương biểu thức loại nhất và biểu thức loại nhì nằm trong 3 phiên tích biểu thức loại nhất và bình phương biểu thức loại nhì rồi cùng theo với lập phương của biểu thức loại nhì.

 Ví dụ:

a) Tính 33+ 43.

b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.

Lời giải:

a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.

b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.


Hằng đẳng thức a^3 - b^3 (a nón 3 trừ b nón 3)

(A - B^3 = A3 - 3A2B + 3AB2 - B3

Lập phương của một hiệu vì chưng lập phương của biểu thức loại nhất trừ 3 phiên tích của bình phương biểu thức loại nhất và biểu thức loại nhì nằm trong 3 phiên tích biểu thức loại nhất và bình phương biểu thức loại nhì rồi trừ với lập phương của biểu thức loại nhì.

Ví dụ : 

a) Khai triển hằng đẳng thức (2x - 3y)3

b) Viết biểu thức 8 - 12x + 6x2 - x3 bên dưới dạng lập phương của một tổng.

Lời giải:

a) Khai triển hằng đẳng thức (2x - 3y)3 tao được:

(2x - 3y)3

= (2x)3 - 3.(2x)2(3y) + 3(2x).(3y)2 - (3y)3

= 8x3 - 36x2y + 54xy2 - 27y3

b) Viết biểu thức 8 - 12x + 6x2 - x3 bên dưới dạng lập phương của một tổng tao được:

8 - 12x + 6x2 - x3

= 23 - 3.22.x + 3.2.x2 - x3

= (2 - x)3

Hằng đẳng thức a^3 + b^3 + c^3

A3+B3 +C3  –  3ABC = (A + B + C)(A2 + B2 + C2 – AB – BC – CA)

Ví dụ: Chứng minh biểu thức a3+b3 +c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc –ca).

Ta tiếp tục phân tách a3+b3 +c3  –  3abc (1) trở nên nhân tử, tao có:

(a+b)3 = a3 + 3a2b + 3ab2 +  b3  suy ra: 

a3 + b3 = (a+b)3 – 3ab(a+b) (áp dụng hằng đẳng thức)

Như vậy: (1) tương tự (a+b)3 – 3ab(a+b) + c3 – 3abc 

= (a+b)3 + c3 – (3ab(a+b) + 3abc)

= (a+b+c)(a2+2ab +b2– (a+b)c+c2) – 3ab(a+b+c) 

= (a+b+c)(a2+2ab+b2– (a+b)c+ c2– 3ab) 

= (a+b+c)( a2+2ab+b2– ac – bc+ c2 – 3ab) 

= (a+b+c)( a+b2 c2– ac – bc- ab) = vế nên. (điều nên bệnh minh)

→ Kết luận: a3+b3 +c3  –  3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

Một số bài xích tập dượt minh hoạ (Có đáp án)

a 3 b 3

Bài tập dượt minh họa

Bài 1: Tính độ quý hiếm của biểu thức:

a) A = x3 - 3x2 + 3x + 2 bên trên x = 11

b) B = x3 - 9x2 + 27x - 27 bên trên x = 4

Lời giải:

a) Ta có:

A = x3 - 3x2 + 3x + 2

A = x3 - 3x2 + 3x -1 + 3

A = (x - 1)3 + 3

Thay x = 1 vô biểu thức rời khỏi có:

A = (1 - 1)3 + 3

A = 03 + 3

A = 3

Vậy A = 3

b) Ta có:

B = x3 - 9x2 + 27x - 27

B = x3 - 3.x2.3 + 3.x.32 - 33

B = (x - 3)3

Thay x = 4 vô biểu thức tao có:

B = (4 - 3)3 = 13 = 1

Vậy B = 1

a 3 b 3

Hằng đẳng thức xứng đáng nhớ

Bài 2: Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.

Lời giải:

a) kề dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.

( a - b )( a + b ) = a2 - b2.

Khi tê liệt tao đem ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0

⇔ x3 - x3 + 4x - 27 = 0

⇔ 4x - 27 = 0 

Vậy x= 27/4

b) kề dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2 - b3

( a + b )3 = a3 + 3a2b + 3ab2 + b3

( a - b )2 = a2 - 2ab + b2

Khi tê liệt tao có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10

⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10

⇔ 12x = - 6 

Vậy x= -1/2

Hy vọng đấy là tài liệu hữu ích, hướng dẫn các chúng ta ôn tập bên trên lớp hoặc sử dụng tại nhà làm tài liệu tự học ôn luyện những bài xích tập dượt 7 hằng đẳng thức lưu niệm.