Lý thuyết giải bài toán bằng cách lập phương trình | SGK Toán lớp 8

admin

1. Các kiến thức cần nhớ 

Các bước giải bài toán bằng cách lập phương trình

 Bước 1: Lập phương trình:

-Chọn ẩn và đặt điều kiện cho ẩn.

-Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

-Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

 Bước 2: Giải phương trình.

 Bước 3: Trả lời: Chọn các nghiệm thỏa mãn điều kiện của ẩn rồi kết luận.

2. Các dạng toán thường gặp

Dạng 1: Toán về quan hệ các số

Phương pháp:

Dựa vào điều kiện của đề bài để chọn ẩn và lập phương trình liên quan đến các số.

Dạng 2: Toán chuyển động

Phương pháp

Ta thường sử dụng các công thức $S = v.t$; $v = \dfrac{S}{t}; t = \dfrac{S}{v}$

Với $S:$ là quãng đường, $v:$ là vận tốc, $t$: thời gian

Đối với bài toán chuyển động của cano hoặc tàu trên dòng nước thì

${V_{xd}} = {V_t} + {V_n};{V_{nd}} = {V_t} - {V_n}$

với ${V_{xd}}$ là vận tốc cano (tàu ) khi xuôi dòng;

${V_{nd}}$ là vận tốc cano (tàu ) khi ngược dòng;

${V_t}$ là vận tốc thực của  cano (tàu ) (khi nước yên lặng);

${V_n}$ là vận tốc của dòng nước.

Dạng 3: Toán làm chung công việc

Phương pháp

Một số lưu ý khi giải bài toán làm chung công việc

- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.

Công thức: Toàn bộ công việc bằng tích năng suất với thời gian.

- Nếu một đội làm xong công việc trong $x$ ngày thì một ngày đội dó làm được $\dfrac{1}{x}$ công việc.

- Xem toàn bộ công việc là $1$ (công việc).

Dạng 4: Toán phần trăm

Phương pháp

- Nếu gọi tổng số sản phẩm là $x$ thì số sản phẩm khi vượt mức $a\% $ là $(100 + a)\% .x$ (sản phẩm)

- Nếu gọi tổng số sản phẩm là $x$ thì số sản phẩm khi giảm $a\% $ là $(100 - a)\% .x$ (sản phẩm)

Dạng 5: Toán có nội dung hình học

Phương pháp

Một số công thức cần nhớ

Với tam giác:

Diện tích = (Đường cao . Cạnh đáy) $:2$

Chu vi = Tổng độ dài ba cạnh

Với tam giác vuông:

Diện tích = cạnh góc vuông . cạnh góc vuông $:2$

Với hình chữ nhật: 

Diện tích = Chiều dài. Chiều rộng

Chu vi= 2.(Chiều dài + Chiều rộng)

Với hình vuông cạnh $a$

Diện tích = ${a^2}$

Chu vi = Cạnh . $4$

Dạng 6: Toán về năng suất lao động

Phương pháp:

Năng suất bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành